
34 The Delphi Magazine Issue 50

Localising
With Delphi 5
by Marco Cantù

If you take a quick look at Delphi 5
Enterprise to see what’s new,

and if you are living in or working
for a non-English-speaking coun-
try, you will immediately find what
I think is the best new feature: the
Integrated Translation Environ-
ment, or ITE for short. Actually,
this is not really totally new: Delphi
4 provided a bare Resource DLL
Wizard, which is still in Delphi 5
but has been completely updated.
Veteran Delphi developers will
also remember the very expensive
and quite unfinished Borland
Translation Suite, and the cut-
down Delphi Translations Pack,
which provided ready-to-use
translations of the VCL messages.

The not-so-great technologies of
the past have now been turned into
an interesting tool. I will cover the
ITE briefly and then I’ll delve into
the core of the article: the built-in
VCL support for multi-language
resources.

Welcome To The ITE
The ITE is a collection of tools and
forms part of the Delphi IDE. The
tools exploit some VCL features
which I’ll describe later. Most of
the ITE features can be activated

from the Project | Language menu
of the Delphi IDE. This menu has
four commands: you can add a new
translation (opening the Resource
DLL Wizard), remove a translation,
set the active language (for debug-
ging purposes), and update the
resource DLL (refresh the current
data). You can also perform all
these operations from the Transla-
tion Manager, which you can
activate from the View menu.

Another menu item related to
the ITE is Tools | Translation
Repository, which opens a reposi-
tory of default translations for
words or sentences appearing
multiple times in your application,
or translations you want to share
amongst multiple applications.

Finally, for customising the ITE
you can move to the new Transla-
tion Tool page of the Environment
Optionsdialog you can see in Figure
1. Some of the options are not intu-
itive, but they can be figured out.
I’m not sure why you are supposed
to use different fonts for the vari-
ous languages in the Translation
Manager. Notice that the
repository is based on a file, so that
you can have different repositories
for different projects, or (more

interestingly I guess)
share the repository
amongst multiple
programmers.

The Resource
DLL Wizard
This is the starting
point for developing a
localised version of a
program. In the first
page of the wizard you
select the projects of

the active group you want to trans-
late. In the second page you
choose one or more target lan-
guages (you can always add more
languages later on). In the third
page you can change the directory
where the wizard will store the
files it generates. By default it uses
the three letter code of the Win-
dows language or ‘locale’.

The fourth page of the wizard
prompts you for the action to per-
form (adding a new language or
updating). Considering that you
cannot add a language already
defined, as this will be removed
from the list, I’ve had a hard time
figuring out when this page can be
used. The fifth and final page of the
wizard provides a summary of the
operations, and allows you to view
a short statistical summary after
the wizard is done.

Notice that the wizard requires
you to save the current project
when it starts and will automati-
cally perform a compilation before
generating the translated projects
(there is apparently a Delphi bug
preventing this process if the Todo
List window is open). The transla-
tion involves extracting the form
and string resources of the appli-
cation. Form resources are the
DFM files included in the project.
String resources are the string
constants declared with the
resourcestring keyword.

While completing its work, the
wizard generates a directory for
each of the languages you have
selected. Each of these directories
contains a Delphi project and the
DFM files and string resource files
to be translated. The project is a
library, with an extension corre-
sponding to the three-letter locale
code, including the various
resources, but not the original
code. The code will be only in the
main executable file, while the
translated resources will be in
these libraries automatically
loaded by the main program, as I’ll
describe later.

The Translation Manager
The Resource DLL Wizard was
already available in Delphi 4, even
if in a slightly different form. What
is new in Delphi 5 is the support for

➤ Figure 1:
The Translation
Tool page of the
environment.

October 1999 The Delphi Magazine 35

managing the translation task with
two support tools, the Translation
Manager and the Translation
Repository.

The Translation Manager is the
main window you’ll work with, or
you will get a professional transla-
tor to work with. This window lists
all the available translations of the
project and, for each translation,
all the resources you can modify.

The main window (Figure 2) lists
the elements you can modify in the
translation and provides the origi-
nal and translated text, but also
tracks past versions of the original
and translation, the change dates,
and the translation status. Of
course, you can filter this table and
choose the columns you want to
see, using its shortcut menu.

The resources you can modify
include all the strings and all the
string properties of the DFM files,
plus a few other properties you
might want to modify for the trans-
lation. For example, you can
change the positions and fonts of
most controls. This might be
required when the different length
of the translated text affects the
user interface. Of course, it is not
easy to determine whether the size
and position of the controls is cor-
rect by looking at these numbers.
What you can do is close the Trans-
lation Manager, select the new
translation project (which is auto-
matically added to the current pro-
ject group), move to the form, and
open it (Figure 3). The interesting
feature is that you can freely edit
the translated form (as long as you
don’t add any components to it),

moving controls,
changing fonts and
so on.

When you re-
open the Transla-
tion Manager (by
selecting the main
project and issuing
the non-obvious
command Project |
Languages | Update
Resource DLL), this
will read the cur-
rent values from

the DFM files (the original and the
translated ones) and refresh its
structure accordingly. This way, if
you update the original form, you
don’t have to translate it again, but
only provide the translation for the
new elements. At the same time,
you can modify the translated DFM
file and see the changes reflected
in the translation system. All the
information generated by the
Translation Manager is saved in a
series of files with the DFN exten-
sion. There is one DFN file for each
form of each translation.

The Translation Repository
The Translation Manager works in
conjunction with another tool, the
Translation Repository (see Figure
4), where you can store the stan-
dard translation of a frequent term.
Borland has promised to provide
pre-defined repositories with the
translation of VCL error messages
in French, German, and Japanese.

You can update the repository
manually (using the Tools | Trans-
lation Repository command to
open it) or use the Repository | Add
strings to repository command
from the shortcut menu of the
Translation Manager. You can use
another command from the same
shortcut submenu (Get strings
from repository) to
automatically trans-
late all of the terms
available in the
repository. Notice
that the repository
can handle multiple

translations for the same word,
and other advanced elements.

The data of the translation
repository is saved in files with the
RPS extension. You can handle
multiple repositories and even
export and import them to and
from an XML format.

VCL Support
Once you’ve compiled the trans-
lated project, you can use the Pro-
ject | Languages | Set Active
command to activate it, so that
running the project in the
debugger will load the active
language extension. This is only a
test: usually you will simply need
to run the main executable file and
it will automatically use the
translated DLL corresponding to
the current regional locale
selected on the computer (via the
Control Panel’s Regional Settings).

➤ Figure 2: The Delphi 5
Translation Manager.

➤ Figure 3: A translated form at
design-time. You can resize
components and even correct
the translation in the form
designer, and the changes will
be incorporated back into the
Translation Manager files.

➤ Figure 4:
The Translation
Repository.

36 The Delphi Magazine Issue 50

As I’ve already mentioned, the
wizard creates a DLL project which
includes the translated DFM file
and strings, and has an extension
that corresponds to the three-
letter code which identifies the
locale. This structure is visible in
the project source code. In Listing
1 the $R directives determine the
resources to include in the project
(six forms and a set of strings), and
are followed by the comments
required by the ITE (you should be
careful not to modify them). Notice
that some of the forms, such as the
database login dialog, are not part
of the application but part of the
VCL, and are stored in a specific
subdirectory. The $E directive
determines the extension of the
executable file.

As you compile the resource
DLL, its output is placed in the
parent directory (thanks to a pro-
ject option set up by the wizard),
the same one hosting the project,
so that it will become immediately
available. As you start this execut-
able file, the VCL will actually load
the resources either from the main
EXE file or from the DLL matching
the current regional settings. This
takes place in the LoadResource-
Module function of Delphi’s System
unit. This function calls the
GetLocaleInfo API and looks in the
registry for locale overrides to
determine the required locale,
then loads either the language and
country translation (using the
three-letter extension) or the
language-only translation (using
the first two letters only). The
library to use for loading the

resource is determined at startup,
before forms or strings are loaded,
and is saved in the ResInstance
field of the TLibModule data struc-
ture. A list of these data structures
is referenced by the LibModuleList
global pointer of the System unit.

Hidden Gems Of
The RichEdit Demo
This translation support offered by
Delphi 5 is certainly powerful and
can be handy when you need to
provide multiple versions of your
application. However, it has a defi-
nite limitation: to change the lan-
guage within the program you need
to close and restart it.

An alternative approach pro-
vided by Borland is the ability to
modify the resource instance
handle at runtime, reload the DFM
files, and recreate the forms. How-
ever, not all of these features are
part of the VCL, but are provided in
a separate unit, ReInit, part of the
RichEdit demo.

You can embed this ReInit unit
in your programs and call its two
routines to change the language
dynamically:

function LoadNewResourceModule(
Locale: LCID): Longint;

procedure ReinitializeForms;

The first routine changes the
ResInstance field of the library
module, after loading the proper
translation library. The second
reloads the resource file for every
form used by the program. You can
see the code of this function in the
unit itself, so I won’t describe it
here. An example of its usage is
given in the SwitchLanguage
method of the main form of the
RichEdit program.

The problem with this approach
is that while recreating the forms
you might lose the current editing
and database connections. As an
example, I’ve translated the
TwoViews program from my book
Mastering Delphi 5, to show you
how to apply the ReInit unit to a
simple database program (the pro-
gram is a simple database example
based on a data module and two
different views of the same data,
one grid-based and the other form-
based, with some filtering and
range setting capabilities).

In the sample program the data-
base connection is kept because it
is handled by a separate data
module, and so the database
fields’ input is preserved while
changing the language dynami-
cally. The secondary form, where
you can select ranges and filters,
loses its current content when the
language changes. You should
make it modal, close it, or read in
the current settings and re-apply
them after switching the language.

Dynamic Language Loading
As you can see in Figure 5, the
ViewGrp project group contains
the original TwoViews program
plus two localised versions, UK
English and Italian. I’ve added the
UK English version to highlight the
fact that you might want differ-
ences from the US to the UK ver-
sion of a program, to account for
different spelling and more. The
second reason was to better sup-
port dynamic linking: by adding a
locale corresponding to the origi-
nal program you can reload it in
the same way you load a transla-
tion. Otherwise you would have to
modify the code to load the
resources from the main EXE for a
standard language.

In the example, I’ve done a very
fast translation of the main
resources into Italian. I haven’t
translated the VCL error messages
or the pre-defined VCL forms, but
only the main forms. If you run the
Italian version, or press the
corresponding button, you’ll real-
ise there is an obvious error: the
grid columns take their captions
from the field names, which are not
and should not be localised. The

// Do not edit.This file is machine generated by the Resource DLL Wizard.
library Twoviews;
{ITE} {DFMFileType} {vcl\DBLOGDLG.dfm}
{ITE} {DFMFileType} {vcl\DBPWDLG.dfm}
{ITE} {DFMFileType} {DataM.dfm}
{ITE} {DFMFileType} {FormView.dfm}
{ITE} {DFMFileType} {GridView.dfm}
{ITE} {DFMFileType} {RangeDb.dfm}
{ITE} {RCFileType} {Twoviews_DRC.rc}
{$R 'vcl\DBLOGDLG.dfm' LoginDialog:TForm(Form)}
{$R 'vcl\DBPWDLG.dfm' PasswordDialog:TForm(Form)}
{$R 'DataM.dfm' DataModule2:TDataModule}
{$R 'FormView.dfm' Form3:TForm}
{$R 'GridView.dfm' Form1:TForm}
{$R 'RangeDb.dfm' FormRange:TForm}
{$R 'Twoviews_DRC.res' 'Twoviews_DRC.rc'}
{$E ita}
begin
end.

➤ Listing 1: The source code of a
sample project generated by
the Resource DLL Wizard.

38 The Delphi Magazine Issue 50

solution is to use the Columns prop-
erty of the grid to make these
strings explicit and include them in
the translation.

The real feature of the program
is its dynamic loading support.
When it starts it gets the current
user locale (which in this case
should be either Italian or English),
as you can seen in the FormCreate
method of Listing 2. A specific
button allows a user to change the
language on the fly, with the code
of the LanguageSpeedButtonClick
method, which calls the two
routines of the ReInit unit I’ve bor-
rowed from the RichEdit Delphi
demo.

Prepare To Translate
Although I have only a limited
experience with the ITE, I’ve pre-
pared a set of rules you can follow

➤ Listing 2: Portions of the code
from the TwoViews example.to help avoid translation prob-

lems. First, avoid hard-coded
strings. Even your message boxes
and exception messages should be
based on resource string con-
stants. Second, beware automatic
strings, such as the automatic
DBGrid headers and so on. You
should make all VCL strings
explicit at design-time, so they’ll be

included in the set of strings to
translate. Lastly, to support
dynamic language changes
use data modules, which don’t
have to be re-created dynami-
cally, instead of placing the
dataset components in the
forms.

Conclusion
Although I haven’t covered in
detail all of the features of the
Integrated Translation Envi-
ronment provided by Delphi 5,
I hope I’ve given you a feeling
for its capabilities. Also, I’ve
explored the technical sup-
port offered by the VCL to

manage localised versions, includ-
ing the dynamic loading provided
by Borland in the RichEdit demo.

Programmers have devised
many schemes for handling static
or dynamic translations and local-
isation of Delphi programs, but the
ITE support changes the picture.
Although some third-party solu-
tions are still viable, the built-in
support is at last good enough for
professional development. The
only drawback is that is it very
Delphi-centric. You can move all
the strings to a repository, convert
it to XML, let a professional trans-
lator work with an XML editor,
import the XML-based translation,
and apply the strings in the reposi-
tory to the Translation Manager.
But the translator needs Delphi
Enterprise to check his work.

Marco Cantù (www.marcocantu.
com) is the author of a number of
books, which include Mastering
Delphi 5, Delphi Developer’s
Handbook, and Essential Pascal,
as well as articles. Marco lives in
Italy, teaches Delphi classes and
speaks at conferences around the
world.

Editor’s Note. Together with
Bob Swart, Marco Cantù recently
received the 1999 Spirit of Delphi
award from Inprise. Congratula-
tions to them both!

➤ Figure 5: A sample project
group with two translations.
Notice that only the main
program includes the Pascal
code.

type
TForm1 = class(TForm)
...

private
CurrLocale: LCID;

end;
implementation
uses
ReInit;

const
ENGLISH = (SUBLANG_ENGLISH_UK shl 10) or LANG_ENGLISH;
ITALIAN = LANG_ITALIAN;

procedure TForm1.LanguageSpeedButtonClick(Sender: TObject);
var Locale: LCID;
begin
if CurrLocale = ENGLISH then
Locale := ITALIAN

else
Locale := ENGLISH;

if LoadNewResourceModule(Locale) <> 0 then begin
ReinitializeForms;
CurrLocale := Locale;

end;
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
CurrLocale := GetUserDefaultLCID;

end;

	Welcome To The ITE
	The Resource DLL Wizard
	The Translation Manager
	The Translation Repository
	VCL Support
	Hidden Gems Of The RichEdit Demo
	Dynamic Language Loading
	Prepare To Translate
	Conclusion

